COMPARISON OF ANODIZED FINISH STANDARDS | TEST | | PERFORMANCE | | | | | |------------|---------------------------------|---|--|--|----------------------------|---| | | | AAMA 612 | AAMA 611 | | ADVANTAGE | COMMENTS | | | | 7011171 012 | CLASS I | CLASS II | | | | FINISH | Coating
Thickness | 0.7 mils
(18 microns) | 0.7 mils
(18 microns) | 0.4 mils
(10 microns) | None | The overall thickness of the coating helps to protect the integrity of the finish and the aluminum itself. | | | Color
Uniformity | Samples Shall Not Differ
More Than 5 Delta E | Samples Shall Not Differ
More Than 5 Delta E | | None | Request manufacturer's color/range samples to view anticipated variances in color. | | STRENGTH | Hardness | No Film Rupture
Rating of 30
No Film Removal | Test: Michael Clark Abrasion
Performance: Finish is
Merely Burnished | | AAMA 611
(See Comments) | AAMA 612 finishes have a minimum
hardness of 3H which is significantly
harder than painted finishes used in com-
mercial construction. | | | Muriatic Acid
Resistance | No Blistering
& No Visual
Change in Appearance | Samples Are Not Tested
For Muriatic Acid Resistance | | AAMA 612 | Muriatic acid is a highly corrosive acidic chemical used to clean masonry and may damage anodize finishes with conventional seals. | | | Mortar
Resistance | No Blistering
& No Visual
Change in Appearance | Samples Are Not Tested
For Mortar Resistance | | AAMA 612 | Mortar, a highly corrosive alkaline, is a very common substance on construction sites and will quickly damage anodize finishes with conventional seals. | | | Nitric Acid
Resistance | Maximum Change in
Color of 5 Delta E | Samples Are Not Tested
For Nitric Acid Resistance | | AAMA 612 | The nitric acid test is designed to determine a finishes ability to resist damage from acid rain. | | | Detergent
Resistance | No Blistering
& No Visual
Change in Appearance | Samples Are Not Tested
For Detergent Resistance | | AAMA 612 | Detergent is often used to clean build-
ings and may damage anodized fin-
ishes with conventional seals. | | | Window
Cleaner
Resistance | No Blistering
& No Visual
Change in Appearance | Samples Are Not Tested
For Window Cleaner
Resistance | | AAMA 612 | Window cleaner may damage
anodized finishes with conventional
seals. | | DURABILITY | Humidity
Resistance | Only a Few Small
Blisters as Defined by
ASTM D 714 | Samples Are Not Tested
For Humidity Resistance | | AAMA 612 | The high humidity in coastal environ-
ments is very corrosive to anodized
finishes with conventional seals. | | | Salt Spray
Resistance | Min. Rating of 7 for the
Scribed Area & 8 for
Blisters ASTM D 1564
(4,000 Hours) | Samples
Simply
Exposed for
3,000 hours | Samples Simply Exposed for 1,000 hours | AAMA 612 | The high salt in coastal environments is very corrosive to anodized finishes with conventional seals. | | | Gloss
Retention | Gloss Retention Shall
Be a Min. of 50%
After 5 Years
South Florida | Samples Not
Tested for
Gloss
Retention | Samples Not
Tested for
Gloss
Retention | AAMA 612 | Testing has revealed that anodized fin-
ishes with conventional seals may loose
up to 50% of their gloss within 1 year. | | | Erosion | Less Than 10% Film
Thickness Lost
After 5 Years
South Florida | Samples Not
Tested for
Erosion
Resistance | Samples Not
Tested for
Erosion
Resistance | AAMA 612 | Loss of film thickness will dramatically affect the durability and appearance of the finish. | AAMA 612: Voluntary Specifications, Performance Requirements, and Test Procedures for Combined Coatings of Anodic Oxide and Transparent Organic Coatings on Architectural Aluminum is the newest standard for anodized finishes issued by AAMA (American Architectural Manufacturers Association). The new standard is designed to evaluate the durability of the anodized finish by adding requirements for gloss retention, erosion, and increases by 33% – 400% the number of hours that the samples are tested for resistance to damage from salt spray. To ensure that the finish maintains its beauty, AAMA 612 requires that the anodized finish be able to resist damage from mortar, acid rain, pollution, detergent, and window cleaner. Tests have proven that to pass the additional tests required by AAMA 612 all of the pores of the anodic finish must be completely sealed. Complete Aluminum Anodized Plus® meets or exceeds all of the requirements for AAMA 612.